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REGULARIZATION OF DYNAMICAL SYSTEMS ASSOCIATED

WITH PROX-REGULAR MOVING SETS

MOUSTAPHA SENE AND LIONEL THIBAULT

Abstract. This paper is concerned with the regularization of the dynamical
differential inclusion of a perturbed sweeping process associated, on an interval,
with the normal cone to a moving set C(t). It is shown that when the set C(t) is
ρ-prox-regular and moves in a Lipschitzian way, one can regularize the differential
inclusion by a family of usual differential equations which are well posed. The
family of solutions of the regularized differential equations is shown to converge
uniformly to a solution of the differential inclusion.

1. Introduction

Let H be a real Hilbert space and let C : [T0, T ] ⇒ H(T > T0) be a set-valued
mapping with nonempty closed values. The paper is concerned with the differential
inclusion

(Ef )

{
u̇(t) ∈ −NC(t)(u(t))− f(t, u(t))
u(T0) = a ∈ C(T0).

Here f : [T0, T ]×H −→ H is a mapping which is Bochner measurable with respect
to the first variable and Lipschitzian with respect to the second variable; NC(t)(·)
(see the next section) denotes the Mordukhovich or basic normal cone to the closed
set C(t).

The differential inclusion (Ef ) or some of its variants appear in modelizations in
several fields as resource allocation mechanisms in economics (see, e.g., [11, 15]),
complementarity systems (see [2]), dissipative systems in electrical circuits (see [16]),
crowd motion modelization (see [18]), etc. See also [4, 5, 6, 12, 13, 17, 24, 29, 31]
for other contributions.

When the sets C(t) are supposed to be convex, J.J. Moreau [21, 22, 23] proved
an existence and uniqueness result for the solution of E0(f ≡ 0). Moreau’s method
in [21, 22] consists in discretizing [T0, T ] by an appropriate subdivision T0 = tn0 <
tn1 < · · · < tnp−1 < tnp = T and in taking the iterates un0 = a, uni+1 = proj C(tni+1)

(ui),

and then defining a mapping un(·) through those iterates. This is known as Moreau
catching-up algorithm. This method of discretization was extended to the non-
convex case by G. Colombo and V.V. Goncharov [8], M. Bounkhel and L. Thibault
[1], J. F. Edmond and L. Thibault [12]. Those authors proved the convergence of
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the Moreau catching-up algorithm under a prox-regularity assumption on the sets
C(t) of the Hilbert space H. For previous works with complements of open convex
sets in finite dimensions, we refer to M. Valadier [31], C. Castaing, T.X. Duc Ha
and M. Valadier [5].

Recently, with a regularization procedure which was used in the convex case by
J.J. Moreau [22], L. Thibault [30] proved that under the prox-regularity of C(t) one
can regularize the problem (E0) to obtain a usual differential equation

(E0,λ)

{
u̇(t) = − 1

2λ∇d2C(t)(uλ(t))

uλ(T0) = a ∈ C(T0),

whose classical solution is shown to converge in some sense to the solution of (E0).
M. Mazade and L. Thibault [19] used the same procedure to regularize, for a

fixed local prox-regular set K, the differential inclusion

(1.1)

{
u̇(t) ∈ −NK(u(t))− f(t, u(t))
u(T0) = a ∈ K,

into the following differential equation

(1.2)

{
u̇λ(t) = − 1

2λ∇d2K(uλ(t))− f(t, uλ(t))
uλ(T0) = a ∈ K.

The main difference between (1.1) and (Ef ) is the fact that in (1.1) the set K does
not depend on the time and it is locally prox-regular while in (Ef ) the set C(·)
moves in a Lipschitzian way with respect to the time.

In the present paper, our purpose is to use the same regularization process in [19]
to regularize (Ef ) into the following usual differential equation

(Ef,λ)

{
u̇λ(t) = − 1

2λ∇d2C(t)(uλ(t))− f(t, uλ(t))

uλ(T0) = a ∈ C(T0).

Indeed it is shown that, when the set C(t) is ρ-prox-regular and moves in a Lip-
schitzian way with γ as a Lipschitz constant, there exists some real θ > 0 (inde-
pendent of λ) such that the regularized differential equation (Ef,λ) is well-posed on
[T0, T0 + θ] with a unique solution uλ(·) on [T0, T0 + θ] and that the family (uλ(·))λ
converges uniformly on [T0, T0+θ] (when λ ↓ 0) to a solution of (Ef ) on [T0, T0+θ].
The existence and uniqueness of solution of (Ef ) is then derived on the whole in-
terval [T0, T ] through a division of the interval into subintervals of lenght less than
θ.

The paper is organized as follows. In Section 2 we recall the main concepts and
results used throughout the paper and we state the main theorem. The proof of
the theorem is developed in Section 3 through several lemmas; many of them have
their own interest.

2. Preliminaries and statement of the main result

Throughout, H is a real Hilbert space and S is a closed subset of H.
For x ∈ H and δ > 0, we will denote by B(x, δ) the open ball of H centered at x
with radius δ.
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Definition 2.1. For x ∈ S, an element ζ ∈ H is a Fréchet normal vector of the set
S at x when for any real ε > 0 there exists some neighbourhood V of x such that

⟨ζ, x′ − x⟩ ≤ ε∥x′ − x∥ for all x′ ∈ S ∩ V.

The set NF (S;x) of all Fréchet normal vectors of S at x is called the Fréchet
normal cone of S at x. For x /∈ S one put NF (S;x) = ∅. The Fréchet normal cone
is related to the Fréchet subdifferential of a function see[20, 27] in the following way.

Definition 2.2. Let U be a neighbourhood of a point x in H and let φ : U −→
R∪{−∞,+∞} be an extended real valued function. An element ζ ∈ H is a Fréchet
subgradient of φ at x if (ζ,−1) ∈ NF (epiφ; (x, φ(x)).

The set ∂Fφ(x) of all Fréchet subgradients of φ at x is called the Fréchet subdif-
ferential of φ at x. When ∂Fφ(x) ̸= ∅ one says that φ is Fréchet subdifferentiable
at x.

The Fréchet subdifferential enjoys only fuzzy calculus rules see[20], that is, for any
function g : X −→ R∪{+∞} which is Lipschitzian near x ∈ U , for ζ ∈ ∂F (φ+g)(x)
and ε > 0, there exist x′, x′′ ∈ U such that

ζ ∈ ∂Fφ(x
′) + ∂F g(x

′′) + εBH and ∥x′ − x∥+ |φ(x′)− φ(x)| < ε,

where BH denotes the closed unit ball of H centered at zero. So a limiting pro-
cess is needed to obtain calculus rules with the reference point. One defines the
Mordukhovich or basic subdifferential of φ at x ∈ U and the Mordukhovich or basic
normal cone of S at x ∈ S as follows

∂φ(x) = seqLimsup
u→φx

∂Fφ(u) and N(S;x) = seqLimsup
S∋u→x

NF (S;u).

The second member of the first (resp. second) equality denotes the set of all ζ ∈ H
which are the weak limit of a sequence (ζn)n with ζn ∈ ∂Fφ(un) (resp. ζn ∈
NF (S;un)), (un)n converging strongly to x, and φ(un) → φ(x) (resp. un ∈ S). It
will be sometimes convenient to denote the basic normal cone of S at x by NS(x).

It is shown in [26] that the normal cone of a set and the distance function associ-
ated to this set are strongly involved in some characterizations of the prox-regularity
of this set. The closed set S is (uniformly) ρ-prox-regular (see [26]) when any point
x in the open ρ-enlargement of S

Uρ(S) := {u ∈ H : dS(u) < ρ}

has a unique nearest point proj S(x) in S and the mapping proj S is continuous
over Uρ(S); such sets are also called positively reached, weakly convex, p-convex,
O(2)-convex, and proximally smooth, in [14], [32], [3] ,[28], and [7] respectively. In
the definition of Uρ(S) above, dS(x), also denoted by d(x, S), is the distance from
the point x to the set S. A first characterization in terms of the normal cone (see
[26]) is that for any nonzero vector ζ ∈ NS(x) one has x ∈ ProjS(x+ ρ

∥ζ∥ζ), where

ProjS(y) is, for each y ∈ H, the set (eventually empty) of all nearest points of y in
S. Translating this in the fact that for all x′ ∈ S∥∥∥x−

(
x+

ρ

∥ζ∥
ζ
)∥∥∥2 ≤ ∥∥∥x+

ρ

∥ζ∥
ζ − x′

∥∥∥2



4 M. SENE AND L. THIBAULT

we see that this is equivalent to

(2.1) ⟨ζ, x′ − x⟩ ≤ ∥ζ∥
2ρ

∥x′ − x∥2 for all x′ ∈ S.

This ensures that ζ ∈ NF (S;x), and hence NF (S;x) = N(S;x). More generally,
under the ρ-prox-regularity of the closed set S, it is known that

(2.2) N(S;x) = NF (S;x) = {ζ ∈ H : ∃r > 0, x ∈ Proj S(x+ rζ)}.

The inequality (2.1) implies also that

(2.3) ⟨ζ ′ − ζ, x′ − x⟩ ≥ −∥x′ − x∥2

for all ζ ∈ NS(x) and ζ ′ ∈ NS(x
′) with ∥ζ∥ ≤ ρ and ∥ζ ′∥ ≤ ρ. In fact, in [26] it

is proved that the inequality (2.3), called the ρ-hypomonotonicity of the truncated
normal cone NS(·)∩BH , characterizes the ρ-prox-regularity of the closed set S. So,
in the particular case where ρ = +∞, we obtain the monotonicity of the normal
cone to S and hence by [10, 25] one recovers the fact that the ρ-prox-regularity of
the closed set S with ρ = ∞ corresponds to its convexity.

A second fundamental characterization exists in terms of the differentiability of
the associated distance function. In fact, it is shown in [3, 7, 26] that the following
hold.

Proposition 2.3. Let S be a nonempty closed set of the Hilbert space H. The
following are equivalent:
(a) The set S is ρ-prox-regular;
(b) the squared distance function d2S(·) is continuously differentiable over Uρ(S);
(c) the mapping proj S is well defined on Uρ(S) and, for any positive real δ < ρ, the
mapping proj S is Lipschitzian on Uδ with ρ/(ρ − δ) as Lipschitz constant, that is,
for all x, x′ ∈ Uδ(S),

(2.4) ∥proj S(x)− proj S(x
′)∥ ≤ ρ

ρ− δ
∥x− x′∥.

Further, when S is ρ-prox-regular, one has

(2.5) ∇(
1

2
d2S)(x) = x− proj S(x) for all x ∈ Uρ(S).

Now let T0, T be two nonnegative real numbers with T0 < T and, for each
t ∈ [T0, T ], let C(t) be a nonempty closed ρ-prox-regular set in H. One says that
the closed C(t) moves in a Lipschitzian way with t ∈ [T0, T ] when there exists a
constant γ > 0 such that for all x ∈ H

(2.6) |d(x,C(t))− d(x,C(s))| ≤ γ|t− s|

for all s, t ∈ [T0, T ].
We can now state the main result of the paper.

Theorem 2.4. Assume that the closed sets C(t) of the Hilbert space H are ρ-prox-
regular and move in a Lipschitzian way with γ as a Lipschitz constant, that is, (2.6)
holds. Let a ∈ C(T0) and let f : [T0, T ] × B(a, ρ3) → H be a mapping which is
Bochner measurable with respect to t ∈ [T0, T ] and such that:
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(i) - there exists a real β > 0 such that, for all t ∈ [T0, T ] and x ∈ B(a, ρ3),

∥f(t, x)∥ ≤ β;

(ii) - there exists a non-negative real number k such that for all t ∈ [T0, T ] and
for all (x, y) ∈ B(a, ρ3)×B(a, ρ3),

||f(t, x)− f(t, y)|| ≤ k||x− y||.

Let θ be a positive real number such that θ < ρ
3(2β+γ) and let the real λρ := ρ/(β+γ).

Under the above assumptions, for any λ ∈]0, λρ[, the differential equation over
[T0, T0 + θ]×B(a, ρ3)

(2.7)

{
u̇λ(t) = (−1/2λ)∇d2C(t)(uλ(t))− f(t, uλ(t))

uλ(T0) = a

is well defined and has a unique solution uλ on [T0, T0+θ], and the family (uλ)0<λ<λρ

converges uniformly on [T0, T0+θ] as λ ↓ 0 to a solution of the dynamical differential
inclusion (Ef ). Further, this solution stays in B(a, ρ3) and the solution inside this
ball is unique.

If the mapping f is defined on [T0, T ]×H and satisfies the assumptions (i) and
(ii) for all t ∈ [T0, T ] and x, y ∈ H, then dividing [T0, T ] into a finite number of
intervals with length less than or equal to θ yields the existence of a unique solution
u(·) of (E) over [T0, T ]. Further ∥u̇(t)∥ ≤ 2β + γ for almost all t ∈ [T0, T ].

The proof of the theorem will be established in the next section through a series
of lemmas.

3. Proof of the theorem

In all the lemmas below the closed sets C(t) are ρ-prox-regular and satisfy the
inequality (2.6).

We start the proof of Theorem 2.4 with the following lemma which is in the line
of a result in [30]. For completeness we sketch the proof.

Lemma 3.1. Let I be a subinterval of [T0, T ] and z : I → H be a locally abso-
lutely continuous mapping, and let g(t) := d(z(t), C(t)) for all t ∈ I. Assume that
d(z(t), C(t)) < ρ for all t ∈ I. Then, for almost every t ∈ I,

ġ(t)g(t) ≤ ⟨ż(t), z(t)− proj C(t)(z(t))⟩+ γg(t).

Proof. Put φ(t, x) := 1
2d

2(x,C(t)) for all t ∈ I and all x ∈ H. The function g is
absolutely continuous because, by (2.6),

|g(t)− g(s)| ≤ ∥z(t)− z(s)∥+ γ|t− s|

for all s, t ∈ I. Fix any t ∈ int I :=]τ0, τ1[ such that g and z are derivable at
t. Observe that, according to Proposition 2.3 and to (2.5), the function φ(t, ·) is
continuously differentiable around z(t) and that

(3.1) ∇2φ(t, z(t)) = z(t)− proj C(t)(z(t)).
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Write for s ∈]0, τ1 − t[ small enough

1

2s
[g(t+ s)2 − g(t)2] =

1

s
[φ(t+ s, z(t+ s))− φ(t, z(t+ s))]

+
1

s
[φ(t, z(t+ s))− φ(t, z(t))]

≤ γ

2
[d(z(t+ s), C(t+ s)) + d(z(t+ s), C(t))]

+
1

s
[φ(t, z(t+ s))− φ(t, z(t))].

As z is derivable at t, there exists ε(s)−→
s↓0

0 in H such that

z(t+ s) = z(t) + sż(t) + sε(s)

and this yields

1

s
[φ(t, z(t+ s))− φ(t, z(t))] ≤ 1

s
[φ(t, z(t) + sż(t))− φ(t, z(t))]

+
1

2
∥ε(s)∥ [d(z(t) + sż(t) + sε(s)), C(t))

+ d(z(t) + sż(t), C(t))].

Putting this inequality and (3) together we obtain

1

2s
[g(t+ s)2 − g(t)2] ≤ γ

2
[d(z(t+ s), C(t+ s)) + d(z(t+ s), C(t))]

+
1

s
[φ(t, z(t) + sż(t))− φ(t, z(t))] + η(s)

for some η(s)−→
s↓0

0 in R. Taking s ↓ 0, it follows that

ġ(t)g(t) ≤ γg(t) + ⟨∇2φ(t, z(t)), ż(t)⟩

and the proof is complete according to (3.1). �

Throughout the remaining of the paper, fix a positive real θ satisfying

θ <
ρ

3(2β + γ)
.

We observe that, for any x ∈ B(a, ρ3) and any t ∈ [T0, T0 + θ], we have (since
a ∈ C(T0))

(3.2) d(x,C(t)) ≤ d(a,C(T0)) + ∥x− a∥+ γ|t− T0| <
2

3
ρ.

Then, according to Proposition 2.3, for any t ∈ [T0, T0 + θ] the mapping x 7→
1
2∇d2C(t)(x) is well defined on B(a, 13ρ) and by (2.5)

(3.3)
1

2
∇d2C(t)(x) = x− proj C(t)(x).

Further, for any x1, x2 ∈ B(a, 13ρ) we have, by (3.2), the inequalities

d(xi, C(t)) <
2

3
ρ < ρ
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for i = 1, 2, and hence taking δ = 2
3ρ, the inequality (2.4) yields

(3.4) ∥proj C(t)(x1)− proj C(t)(x2)∥ ≤ ρ

ρ− δ
∥x1 − x2∥ = 3∥x1 − x2∥.

Therefore, the mapping 1
2∇d2C(t)(·)+f(t, ·) is Lipschitzian over the ball B(a, 13ρ). On

the other hand, for any x ∈ B(a, 13ρ), the mapping 1
2∇d2C(·)(x) + f(·, x) is Bochner

integrable on [T0, T0 + θ]. Further, from the assumptions of Theorem 2.4 above we
have

(3.5) ∥f(t, x)∥ ≤ β, for all (t, x) ∈ [T0, T0 + θ]×B
(
a,

1

3
ρ
)
.

Fix now any real number λ > 0 and consider the differential equation over
[T0, T0 + θ[×B(a, 13ρ)

(E∗
f,λ)

{
u̇λ(t) = − 1

2λ∇d2C(t)(uλ(t))− f(t, uλ(t))

uλ(T0) = a.

The results just obtained above ensure us that this differential equation has a
(unique) solution uλ(·) defined on itsmaximal interval of existence [T0, Tλ[⊂ [T0, T0+
θ[. In the sequel we will denote −f(t, uλ(t)) as

(3.6) zλ(t) := −f(t, uλ(t)).

Then by (3.3) we have

(3.7) u̇λ(t) = − 1

λ

[
uλ(t)− proj C(t)(uλ(t))

]
+ zλ(t), a.e. t ∈ [T0, Tλ[.

We recall the Gronwall lemma which will be used in the next result as well as in
other places of the paper.

Lemma 3.2 (Gronwall’s lemma). Let b, c, ζ : [t0, t1] → R be three real-valued
Lebesgue integrable functions. If the function ζ(·) is absolutely continuous on the
interval [t0, t1] and if for almost all t ∈ [t0, t1]

ζ̇(t) ≤ b(t) + c(t)ζ(t),

then for all t ∈ [t0, t1]

ζ(t) ≤ ζ(t0) exp
(∫ t

t0

c(τ) dτ
)
+

∫ t

t0

b(s) exp
(∫ t

s
c(τ) dτ

)
ds.

Through the Gronwall lemma we can prove the following lemma which provides
an upper bound for the derivative in t of the distance function from uλ(t) to C(t).

Lemma 3.3. Put gλ(t) := d(uλ(t), C(t)) for any t ∈ [T0, Tλ[. Then gλ is locally
absolutely continuous on [T0, Tλ[ and

ġλ(t) ≤ (β + γ)− 1

λ
gλ(t) a.e. t ∈ [T0, Tλ[.

Further, for all t ∈ [T0, Tλ[

gλ(t) ≤ λ(β + γ).
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Proof. Consider t ∈]T0, Tλ[ where ġλ(t) and u̇λ(t) exist and satisfy (E∗
f,λ). Since

uλ(t) ∈ B(a, 13ρ), we see from (3.2) that d(uλ(t), C(t)) < ρ. Taking z(t) = uλ(t) in
Lemma 3.1, we obtain

ġλ(t)gλ(t) ≤ γgλ(t) + ⟨u̇λ(t), uλ(t)− proj C(t)(uλ(t))⟩

≤ γgλ(t)−
1

λ
⟨uλ(t)− proj C(t)(uλ(t)), uλ(t)− proj C(t)(uλ(t))⟩

+ ⟨zλ(t), uλ(t)− proj C(t)(uλ(t))⟩,
the second inequality being due to the equality

u̇λ(t) = − 1

λ

[
uλ(t)− proj C(t)(uλ(t))

]
+ zλ(t) according to (3.7).

Since gλ(t) = d(uλ(t), C(t)) = ||uλ(t)− proj C(t)(uλ(t))||, we deduce

ġλ(t)gλ(t) ≤ γgλ(t)−
1

λ
g2λ(t) + ⟨zλ(t), uλ(t)− proj C(t)(uλ(t))⟩

≤ γgλ(t)−
1

λ
g2λ(t) + ∥zλ(t)∥∥uλ(t)− proj C(t)(uλ(t))∥

= γgλ(t)−
1

λ
g2λ(t) + gλ(t)||zλ(t)||.

Then using (3.5) and (3.6) we get

ġλ(t) ≤ β + γ − 1

λ
gλ(t) if gλ(t) > 0.

The last inequality is still valid whenever gλ(t) = 0 because this leads to
ġλ(t) = 0. Indeed the equality gλ(t) = 0 ensures for |s| small enough that

1

s
[gλ(t+ s)− gλ(t)] =

1

s
dC(t)(uλ(t+ s)),

and hence, since ġλ(t) exists, we deduce that

ġλ(t) = lim
s↑0

1

s
dC(t)(uλ(t+ s)) ≤ 0 and ġλ(t) = lim

s↓0

1

s
dC(t)(uλ(t+ s)) ≥ 0,

so ġλ(t) = 0. Thus, for almost every t ∈ [T0, Tλ[,

ġλ(t) ≤ (β + γ)− 1

λ
gλ(t),

which is the first inequality of the lemma. Further, observing that

gλ(T0) = d(uλ(T0), C(T0)) = d(a,C(T0)) = 0

and applying Lemma 3.2 with b(·) = β + γ and c(·) = − 1
λ , we also obtain for all

t ∈ [T0, Tλ[ that

gλ(t) ≤ e−t/λ

∫ t

T0

(β + γ)es/λ ds = e−t/λ(β + γ)λ[et/λ − eT0/λ]

= λ(β + γ)[1− e−(t−T0)],

and hence
gλ(t) ≤ λ(β + γ).

�
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In the next lemma we establish an upper bound of the derivative of the solution
uλ(·) of (E∗

f,λ).

Lemma 3.4. For almost every t ∈ [T0, Tλ[, one has

(3.8) ||u̇λ(t)− zλ(t)|| ≤ β + γ,

and consequently

(3.9) ||u̇λ(t)|| ≤ 2β + γ.

Proof. As uλ(·) is a solution of (E∗
f,λ), one has

u̇λ(t) = − 1

λ
[uλ(t)− proj C(t)(uλ(t))] + zλ(t).

So

u̇λ(t)− zλ(t) = − 1

λ
[uλ(t)− proj C(t)(uλ(t))].

This yields

||u̇λ(t)− zλ(t)|| =
1

λ
||(uλ(t)− proj C(t)(uλ(t)))|| = (1/λ)gλ(t),

and applying Lemma 3.3, it ensues that

||u̇λ(t)− zλ(t)|| = (1/λ)gλ(t) ≤ β + γ.

To obtain the last inequality in the lemma, it suffices to note that

||u̇λ(t)|| ≤ ||u̇λ(t)− zλ(t)||+ ||zλ(t)|| ≤ 2β + γ.

�
Lemma 3.4 tells us that the mapping uλ(·) is (2β+γ)-Lipschitzian on [T0, Tλ[. So

Tλ being finite, the limit uλ(Tλ) := lim
t↑Tλ

uλ(t) exists in H and the extended mapping

uλ(·) is Lipschitzian on [T0, Tλ]. Since θ < ρ
3(2β+γ) , we have Tλ − T0 < ρ

3(2β+γ) .

Then for uλ(Tλ) := lim
t↑Tλ

uλ(t) obtained above we have

(3.10) ∥uλ(Tλ)− a∥ = ∥uλ(Tλ)− uλ(T0)∥ ≤ (2β + γ)(Tλ − T0) <
1

3
ρ

and hence uλ(·) (extended at Tλ) is a Lipschitzian solution over the closed interval
[T0, Tλ] of the differential equation{

u̇(t) = − 1
2λ∇d2C(t)(u(t))− f(t, u(t))

u(T0) = a

with uλ([T0, Tλ]) ⊂ B(a, ρ3). Further, Tλ = T0+θ since otherwise (3.10) would allow
us to extend uλ(·) on the right of Tλ in a solution to the differential equation (E∗

f,λ)

with the range of the extension of uλ(·) included in B(a, 13ρ), which would be in
contradiction with the maximality of the interval [T0, Tλ[.

Our analysis establishes that, for any real number λ > 0, the differential equation
relative now to the closed interval [T0, T0 + θ] and denoted by

(Ef,λ)

{
u̇(t) = − 1

2λ∇d2C(t)(u(t))− f(t, u(t))

u(T0) = a



10 M. SENE AND L. THIBAULT

has a unique Lipschitzian solution uλ(·) on the whole closed interval [T0, T0 + θ]
with uλ([T0, T0 + θ]) ⊂ B(a, 13ρ).

Next we prove that this family (uλ)λ>0 satisfies the cauchy criterion as λ ↓ 0. It
is mentioned above in (3.4) that proj C(t)(·) is well defined and is 3-Lipschitzian on
B(a, ρ/3). Also Proposition 2.3 tells us that the ρ-prox-regularity of a given closed
set S is equivalent to the ρ-hypomonotonicity property of NS(·) ∩ BH , that is,

⟨ζ ′ − ζ, x′ − x⟩ ≥ −∥x′ − x∥2

for all ζ ∈ NS(x) and ζ ′ ∈ NS(x
′) with ∥ζ ′∥ ≤ ρ and ∥ζ∥ ≤ ρ.

Further notice from (3.8) that, for λ ≤ ρ
β+γ , we have ∥λ[u̇λ(t)− zλ(t)]∥ ≤ ρ. On

the other hand, from (3.7) and the equality Tλ = T0 + θ, we can deduce that for
every positive real λ ≤ ρ

β+γ ,

ρ

β + γ
[−u̇λ(t) + zλ(t)] ∈ NC(t)

(
proj C(t)(uλ(t))

)
and the projection

proj C(t)(uλ(t)) ∈ C(t)

is well defined with

proj C(t)(uλ(t)) = uλ(t) + λ[u̇λ(t)− zλ(t)] a.e. t ∈ [T0, T0 + θ[.

With those informations at hand, we prove the next lemma.

Lemma 3.5. For all positive numbers λ, µ < ρ/(β+γ), one has for all t ∈ [T0, T0+θ]

||uλ(t)− uµ(t)||2 ≤ 2(λ+ µ)(β + γ)2
∫ t

T0

exp
(
2
[
9
(β + γ

ρ

)
+ k

]
(t− s)

)
ds.

Proof. Using the above arguments with

ζ :=

(
ρ

β + γ

)
[−u̇λ(t) + zλ(t)] and ζ ′ :=

(
ρ

β + γ

)
[−u̇µ(t) + zµ(t)]

we have for a.e. t ∈ [T0, T ]

⟨−u̇λ(t) + zλ(t) + u̇µ(t)− zµ(t),proj C(t)(uλ(t))− proj C(t)(uµ(t))⟩

≥ −
(β + γ

ρ

)
||proj C(t)(uλ(t))− proj C(t)(uµ(t))||2.

According to the equality

proj C(t)(uλ(t)) = λ(u̇λ(t)− zλ(t)) + uλ(t)

and according to the Lipschitzian property of proj C(t)(·) on B(a, ρ/3) with 3 as
a Lipschitzian constant therein, the latter inequality combined with the inclusions
uλ(t), uµ(t) ∈ B(a, ρ/3) yields

⟨−u̇λ(t) + zλ(t) + u̇µ(t)− zµ(t), λ(u̇λ(t)− zλ(t))− µ(u̇µ(t)− zµ(t)) + uλ(t)− uµ(t)⟩

≥ −9

(
β + γ

ρ

)
||uλ(t)− uµ(t)||2.
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Computing the left hand side, we obtain

−λ||u̇λ(t)− zλ(t)||2 − µ||u̇µ(t)− zµ(t)||2 + (λ+ µ)⟨u̇λ(t)− zλ(t), u̇µ(t)− zµ(t)⟩
+⟨zλ(t)− zµ(t), uλ(t)− uµ(t)⟩ − ⟨u̇λ(t)− u̇µ(t), uλ(t)− uµ(t)⟩

≥ −9

(
β + γ

ρ

)
||uλ(t)− uµ(t)||2,

or equivalently

1

2

d

dt
[||uλ(t)− uµ(t)||2] ≤ 9

[
β + γ

ρ

]
||uλ(t)− uµ(t)||2

− λ||u̇λ(t)− zλ(t)||2 − µ||u̇µ(t)− zµ(t)||2

+ (λ+ µ)⟨u̇λ(t)− zλ(t), u̇µ(t)− zµ(t)⟩
+ ⟨zλ(t)− zµ(t), uλ(t)− uµ(t)⟩.

This entails

1

2

d

dt
[||uλ(t)− uµ(t)||2] ≤ 9

[
β + γ

ρ

]
||uλ(t)− uµ(t)||2

+ (λ+ µ)⟨u̇λ(t)− zλ(t), u̇µ(t)− zµ(t)⟩
+ ⟨zλ(t)− zµ(t), uλ(t)− uµ(t)⟩.

Concerning the second expression in the righ-hand side of the latter inequality, note
by (3.8) in Lemma 3.4 that

||u̇λ(t)− zλ(t)|| ≤ β + γ and ||u̇µ(t)− zµ(t)|| ≤ β + γ.

Moreover, since uλ(·), uµ(·) ∈ B(a, 13ρ) and f(t, ·) is k-Lipschitzian on the ball

B(a, 13ρ), we can write

||zλ(t)− zµ(t)|| = ||f(t, uλ(t))− f(t, uµ(t))||
≤ k||uλ(t)− uµ(t)||.

Consequently, we obtain

1

2

d

dt
[||uλ(t)− uµ(t)||2] ≤

[
9

(
β + γ

ρ

)
+ k

]
||uλ(t)− uµ(t)||2 + (λ+ µ)(β + γ)2.

Since uλ(T0)− uµ(T0) = 0, according to Lemma 3.2, we see that for

m := 2
[
9
(
β+γ
ρ

)
+ k

]
we have

||uλ(t)− uµ(t)||2 ≤ 2(λ+ µ)(β + γ)2
∫ t

T0

em(t−s) ds,

which is the desired inequality of the lemma. �
The next lemma proves that the family (uλ) converges to a solution on [T0, T0+θ].

Lemma 3.6. The family (uλ)0<λ< ρ
β+γ

converges uniformly on [T0, T0 + θ] to a

solution of the differential inclusion

(P )

{
u̇(t) ∈ −NC(t)(u(t))− f(t, u(t))
u(T0) = a
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over the interval [T0, T0 + θ] and u([T0, T0 + θ]) ⊂ B(a, ρ3).
Further, ∥u̇(t) + f(t, u(t))∥ ≤ β + γ for almost every t ∈ [T0, T0 + θ], so u(·) is

Lipschitzian over [T0, T0 + θ] with 2β + γ as a Lipschitz constant.

Proof. The above Lemma provides a uniform cauchy criterion for the family uλ(·)
on [T0, T0 + θ] as λ ↓ 0. Therefore (uλ(·)) converges uniformly to a continuous
mapping u(·) ∈ C([T0, T0 + θ],H) as λ ↓ 0.

On the one hand, from Lemma3.3 we have

d(uλ(t), C(t)) ≤ λ(β + γ),

so by letting λ ↓ 0 we get

(3.11) u(t) ∈ C(t) for all t ∈ [T0, T0 + θ].

Next, from the inequality ∥u̇λ(t)∥ ≤ 2β + γ(see (3.9)), we can extract a sequence
(λn), λn ↓ 0, such that u̇λn(·) converges weakly in the space L2([T0, T0 + θ],H) to
some mapping h(·) ∈ L2([T0, T0+θ],H), and ∥h(t)∥ ≤ 2β+γ a.e., since the set {v ∈
L2([T0, T0+θ],H) : ∥v(t)∥ ≤ 2β+γ a.e.} is convex and closed in L2([T0, T0+θ],H).
So for any t ∈ [T0, T0 + θ], fixing any z ∈ H and writing⟨

z,

∫ t

T0

u̇λn(s) ds
⟩
=

∫ T

T0

⟨z1[T0,t](s), u̇λn(s)⟩ ds,

we see that ∫ t

T0

u̇λn(s)ds →
∫ t

T0

h(s)ds weakly in H.

As (uλn(t))n converges strongly in H to u(t), it results from the equality uλn(t) =

a+
∫ t
T0

u̇λn(s) ds that

(3.12) u(t) = a+

∫ t

T0

h(s)ds.

Consequently, u(·) is absolutely continuous with u̇(t) = h(t), for almost all t, and
hence

u̇λn(·) → u̇(·), weakly in L2([T0, T0 + θ], H).

Set z(t) := −f(t, u(t)) and I = [T0, T0 + θ]. Keeping in mind that zλ(t) =
−f(t, uλ(t)), we get

(3.13) u̇λn(·)− zλn(·) → u̇(·)− z(·), weakly in L2(I,H),

and by (3.9) we have ∥u̇(t) − z(t)∥ ≤ β + γ, and hence also ∥u̇(t)∥ ≤ 2β + γ, for
almost every t ∈ I. The latter inequality entails by (3.12) that

∥u(t)− a∥ ≤ (t− T0)(2β + γ) < ρ/3

since θ < ρ
3(2β+γ) , so u([T0, T0+θ]) ⊂ B(a, ρ/3). Applying Mazur’s lemma, through

(3.13) there exist for each n ∈ N some integer r(n) > n and real numbers sk,n ≥ 0

with
r(n)∑
k=n

sk,n = 1, such that
r(n)∑
k=n

sk,n(zλk
− u̇λk

) converges strongly to z(·) − u̇(·) in

L2(I,H).
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Extracting a subsequence, we may suppose that, for some negligible N ⊂ I, the
derivatives u̇(t) and u̇λn(t) exist for all t ∈ I\N and that

(3.14)

r(n)∑
k=n

sk,n(zλk
(t)− u̇λk

(t)) → z(t)− u̇(t), for all t ∈ I \N.

We may also suppose that the inequalities in Lemma 3.4 hold for all t ∈ I\N and
all λn with n ∈ N. Fix any t ∈ I\N . First we have by (3.8) and Schwartz inequality
the estimation ∣∣∣∣∣∣

r(n)∑
k=n

sk,n⟨zλk
(t)− u̇λk

(t), u(t)− proj C(t)(uλk
(t))⟩

∣∣∣∣∣∣(3.15)

≤ (β + γ)

r(n)∑
k=n

sk,n||u(t)− proj C(uλk
(t))||.

Further, the Lipschitz continuity of proj C(t)(·) on B(a, ρ3) and the inclusion u(t) ∈
C(t) (see (3.11)), ensure that

proj C(t)(uλn(t))− u(t) →
n→+∞

0 strongly in H,

so by (3.15)

(3.16)

r(n)∑
k=n

sk,n⟨zλk
(t)− u̇λk

(t), u(t)− proj C(uλk
(t))⟩ → 0 as n → ∞.

Writing for any x′ ∈ H

r(n)∑
k=n

sk,n⟨zλk
(t)− u̇λk

(t), x′ − proj C(uλk
(t))⟩

=
⟨ r(n)∑

k=n

sk,n(zλk
(t)− u̇λk

(t)), x′ − u(t)
⟩

+

r(n)∑
k=n

sk,n⟨zλk
(t)− u̇λk

(t), u(t)− proj C(uλk
(t))⟩

we deduce from (3.14) and (3.16), as n → ∞,

(3.17)

r(n)∑
k=n

sk,n⟨zλk
(t)− u̇λk

(t), x′ − proj C(uλk
(t))⟩ → ⟨z(t)− u̇(t), x′ − u(t)⟩.

On the other hand, noting from (2.2) and (3.8) that

zλ(t)− u̇λ(t) ∈ N
(
C(t); proj C(t)(uλ(t)

)
,
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we see by (2.1) that, for all x′ ∈ C(t),

r(n)∑
k=n

sk,n⟨zλk
(t)− u̇λk

(t), x′ − proj C(t)(uλk
(t))⟩

≤
(
β + γ

2ρ

) r(n)∑
k=n

sk,n||x′ − proj C(t)(uλk
(t))||2,

and since proj C(t)(uλn(t)) → u(t) as n → ∞, using (3.17) it follows that

⟨z(t)− u̇(t), x′ − u(t)⟩ ≤
(
β + γ

2ρ

)
||x′ − u(t)||2 for all x′ ∈ C(t),

which entails

(3.18) −u̇(t) + z(t) ∈ NF (C(t);u(t)) = N(C(t);u(t)).

The inclusion being true for all t ∈ I \N , the proof of the lemma is complete. �

The existence result over the whole interval [T0, T ] can be obtained through the
existence of the truncated interval above.

Lemma 3.7. Assume that f is defined on [T0, T ]×H and satisfies for all t ∈ [T0, T ]
and x, y ∈ H

∥f(t, x)∥ ≤ β and ∥f(t, x)− f(t, y)∥ ≤ k∥x− y∥.

Then a solution for the differential inclusion (Ef ) can be obtained over the whole
interval [T0, T ] by subdivision of the latter into finitely many intervals of length less
than ρ

3(2β+γ) .

Proof. Fix an integer N ∈ N such that T−T0
N < ρ

3(2β+γ) . Without loss of generality

we may then take for the positive real number θ (which has been fixed above with

θ < ρ
3(2β+γ) the real number T−T0

N , i.e., θ = (T − T0)/N . Put Ti = T0 + iθ for

i = 0, 1, · · · , N . Lemma 3.6 provides a Lipschitzian solution u1 (with 2β + γ as
Lipschitz constant) on the interval [T0, T1] for the differential inclusion{

−u̇(t) ∈ NC(t)(u(t)) + f(t, u(t))
u(T0) = a.

As u1(T1) ∈ C(T1) we may apply again Lemma 3.6 with T1 in place of T0 and with
u1(T1) as initial condition to obtain a Lipschitzian solution (with 2β+γ as Lipschitz
constant) over the second closed interval [T1, T2] for the differential inclusion{

−u̇(t) ∈ NC(t)(u(t)) + f(t, u(t))
u(T1) = u1(T1).

We can proceed in this way up to the last closed interval [Tk−1, Tk]. Defining
the mapping u(·) on the whole interval [T0, T ] by putting u(t) := ui(t) for any
t ∈ [Ti−1, Ti], with i = 1, · · · , N , it is easily seen that u(·) provides a Lipschitzian
(with 2β+γ as Lipschitz constant) solution over [T0, T ] for the differential inclusion
(Ef ). �
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The last step of the proof of Theorem 2.4 is the uniqueness of solution for (P )
(in Lemma 3.6) and for (Ef ). This feature is a consequence of the following lemma
with U as B(a, ρ/3) and H respectively.

Lemma 3.8. Let U be an open set of H and let T1 ∈]T0, T ]. Assume that f is
defined on [T0, T1]×U with values in H and satisfies the inequalities in (i) and (ii)
of Theorem 2.4 for all t ∈ [T0, T1] and x, y ∈ U . Then the differential inclusion{

−u̇(t) ∈ NC(t)(u(t)) + f(t, u(t))
u(T0) = a ∈ C(T0)

has at most one solution u(·) over [T0, T1] with u([T0, T1]) ⊂ U .

Proof. Let ui(·)i = 1, 2 be two solutions of the differential inclusion. By the ρ-
hypomonotonicity property of the normal cone of C(t) we have

⟨u̇1(t) + f(t, u1(t))− u̇2(t)− f(t, u2(t)), u1(t)− u2(t)⟩

≤ 1

ρ

(
∥u̇1(t) + f(t, u1(t))∥+ ∥u̇2(t) + f(t, u2(t))∥

)
∥u1(t)− u2(t)∥2.

Recalling that k is a Lipschitz constant of f(t, ·) and putting

α(t) := k +
1

ρ

(
∥u̇1(t) + f(t, u1(t))∥+ ∥u̇2(t) + f(t, u2(t))∥

)
,

we see through (ii) that, for almost every t ∈ [T0, T1],

⟨u̇1(t)− u̇2(t), u1(t)− u2(t)⟩ ≤ α(t)∥u1(t)− u2(t)∥2,

or equivalently
d

dt
∥u1(t)− u2(t)∥2 ≤ 2α(t)∥u1(t)− u2(t)∥2.

Further, by the assumption (ii) the non-negative function α(·) is Lebesgue integrable
on [T0, T1]. Then, the Gronwall lemma (see Lemma 3.2) guarantees that, for all
t ∈ [T0, T1],

∥u1(t)− u2(t)∥2 ≤ ∥u1(T0)− u2(T0)∥2 exp
(
2

∫ t

T0

α(τ) dτ
)
= 0,

which justifies the uniqueness property. �
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Convexe de Montpellier, Exposé 1, 1974.
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[32] J. P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), 231–

259.

Manuscript received ,

revised ,



REGULARIZATION OF SYSTEMS WITH MOVING SETS 17

Moustapha Sene
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